# Opposite skew left braces, Hopf-Galois theory, and solutions to the Yang-Baxter equation 

Alan Koch

Agnes Scott College

March 16, 2019

## Outline

(1) Skew Left Braces and Hopf-Galois Structures
(2) Opposite Braces
(3) Examples
(4) Two Applications
(5) One More Example
(6) Two Final Questions

## Definition

A skew left brace is a set $B$ with two binary operations $\cdot, \circ$ such that
(1) ( $B, \cdot)$ is a group;
(2) $(B, \circ)$ is a group;
(3) for all $x, y, z \in B$ we have

$$
x \circ(y \cdot z)=(x \circ y) \cdot x^{-1} \cdot(x \circ z)
$$

(brace relation)
where $x^{-1}$ is the inverse in $(B, \cdot)$.
Notation:

- Write $\mathfrak{B}=(B, \cdot, \circ)$.
- Write $x y$ for $x \cdot y$ when appropriate.
- For brevity, "brace" = "skew left brace" here.
- Denote the inverse of $x$ in $(B, \circ)$ by $\bar{x}$.
- $e \in B$ denotes the identity (note $x e=x \circ e=x$ ).


## $x \circ(y z)=(x \circ y) x^{-1}(x \circ z)$

## Example (Trivial Brace)

Let $(B, \cdot)$ be a group.

Define $x \circ y=x y$.

Then

$$
(x \circ y) x^{-1}(x \circ z)=(x y) z=x(y z)=x \circ(y z)
$$

and so $\mathfrak{B}:=(B, \cdot, \cdot)$ is a brace.

## $x \circ(y z)=(x \circ y) x^{-1}(x \circ z)$

## Example (Almost the Trivial Brace)

Let $(B, \cdot)$ be a group.
Define $x \circ y=y x$.
Then

$$
\begin{aligned}
(x \circ y) x^{-1}(x \circ z) & =(y x) x^{-1}(z x) \\
& =(y z) x \\
& =x \circ(y z) .
\end{aligned}
$$

Thus, $\mathfrak{B}:=(B, \cdot, \circ)$ is a brace.

$$
x \circ(y z)=(x \circ y) x^{-1}(x \circ z)
$$

Let $N, G$ be groups.
We say $\mathfrak{B}=(B, \cdot, \circ)$ is of type $N, G$ if $(B, \cdot) \cong N$ and $(B, \circ) \cong G$.

## Example (Type $D_{4}, Q_{8}$ )

Let $(B, \cdot)=\left\{\langle\sigma, \tau\rangle: \sigma^{4}=\tau^{2}=\sigma \tau \sigma \tau=e\right\} \cong D_{4}$ and define

$$
x \circ y=\left\{\begin{array}{cc}
x y & x \in\langle\sigma\rangle \text { or } y \in\langle\sigma\rangle \\
\sigma^{2} x y & x, y \notin\langle\sigma\rangle
\end{array} .\right.
$$

Then $(B, \circ) \cong Q_{8} .\left(\right.$ Note: $\tau \circ \tau=\sigma^{2} \tau^{2}=\sigma^{2}$.)

## $x \circ(y z)=(x \circ y) x^{-1}(x \circ z)$

## Example (Type $S_{n}, S_{n}$ with $n \geq 4$ )

Fix $\tau \in A_{n},|\tau|=2$. Let $(B, \cdot)=S_{n}$, and define

$$
\sigma \circ \pi=\left\{\begin{array}{cc}
\sigma \pi & \sigma \in A_{n} \\
\sigma \tau \pi \tau & \sigma \notin A_{n}
\end{array}\right.
$$

Then $(B, \circ) \cong S_{n}$.

## Connection with Hopf-Galois theory

Let $L / K$ be a finite Galois extension of fields, $(G, *)=\operatorname{Gal}(L / K)$.
Greither-Pareigis (1987). There is a one-to-one correspondence between regular subgroups $N \leq \operatorname{Perm}(G)$ which are normalized by $G$ (acting by left regular representation) and Hopf-Galois structures on L/K.

Let $(N, \cdot) \leq \operatorname{Perm}(G)$ be a regular subgroup normalized by $G$. Let $a: N \rightarrow G$ be the bijection given by $a(\eta)=\eta\left[1_{G}\right]$. Define

$$
\eta \circ \pi=a^{-1}(a(\eta) * a(\pi)), \eta, \pi \in N .
$$

Then $(N, \cdot, \circ)$ is a brace, and $(N, \circ) \cong(G, *)$.
The correspondence $[(N, \cdot) \leq \operatorname{Perm}(G)] \mapsto(N, \cdot, \circ),(N, \circ) \cong G$ is onto the set of finite braces but not one-to-one.

## Outline

## (1) Skew Left Braces and Hopf-Galois Structures

(2) Opposite Braces
(3) Examples

4 Two Applications
(5) One More Example

6 Two Final Questions

## Construction of the opposite

Let $\mathfrak{B}=(B, \cdot, \circ)$ be a brace. Define a new operation, $\circ^{\prime}$, on $B$ by

$$
x \circ^{\prime} y=\left(x^{-1} \circ y^{-1}\right)^{-1}, x, y \in B
$$

Since

$$
\begin{aligned}
x \circ^{\prime}\left(y \circ^{\prime} z\right) & =x \circ^{\prime}\left(y^{-1} \circ z^{-1}\right)^{-1} \\
& =\left(x^{-1} \circ y^{-1} \circ z^{-1}\right)^{-1} \\
& =\left(x \circ^{\prime} y\right) \circ^{\prime} z
\end{aligned}
$$

$\left(B, \circ^{\prime}\right)$ is associative.
Also, $x \circ^{\prime} e=\left(x^{-1} \circ e\right)^{-1}=\left(x^{-1}\right)^{-1}=x$ shows $e \in B$ is the identity.
Finally, $x \circ^{\prime}{\overline{x^{-1}}}^{-1}=\left(x^{-1} \circ \overline{x^{-1}}\right)^{-1}=e^{-1}=e$, so $\left(B, \circ^{\prime}\right)$ is a group.

$$
x \circ^{\prime} y=\left(x^{-1} \circ y^{-1}\right)^{-1}
$$

Claim: $\mathfrak{B}^{\prime}:=\left(B, \cdot, o^{\prime}\right)$ is a brace.
For all $x, y, z \in B$ we have:

$$
\begin{aligned}
x \circ^{\prime}(y z) & =\left(x^{-1} \circ(y z)^{-1}\right)^{-1} \\
& =\left(x^{-1} \circ\left(z^{-1} y^{-1}\right)\right)^{-1} \\
& =\left(\left(x^{-1} \circ z^{-1}\right) x\left(x^{-1} \circ y^{-1}\right)\right)^{-1} \\
& =\left(x^{-1} \circ y^{-1}\right)^{-1} x^{-1}\left(x^{-1} \circ z^{-1}\right)^{-1} \\
& =\left(x \circ^{\prime} y\right) x^{-1}\left(x \circ^{\prime} z\right) .
\end{aligned}
$$

We call $\mathfrak{B}^{\prime}$ the opposite brace to $\mathfrak{B}$.

$$
x \circ^{\prime} y=\left(x^{-1} \circ y^{-1}\right)^{-1}
$$

Properties:

- $\mathfrak{B}^{\prime \prime}:=\left(\mathfrak{B}^{\prime}\right)^{\prime}=\mathfrak{B}$.
- $(B, \circ) \cong\left(B, \circ^{\prime}\right)$ by the "inverse" map $x \mapsto x^{-1}$.
- If $(B, \cdot)$ is abelian, then $\mathfrak{B}^{\prime} \cong \mathfrak{B}$.
- $\mathfrak{B}$ and $\mathfrak{B}^{\prime}$ are of the same type.
- The identity $x \circ^{\prime} y=x\left(x^{-1} \circ y\right) x$ holds.
- In general, $\left(\overline{x^{-1}}\right)^{-1} \neq \bar{x}$, i.e., the inverses under $\circ$ and $\circ^{\prime}$ do not coincide.


## Motivation: connection with Hopf-Galois theory II

Let $L / K$ be a finite Galois extension of fields, $G=\operatorname{Gal}(L / K)$, and let $N \leq \operatorname{Perm}(G)$ be regular and normalized by $G$.

Let

$$
N^{\mathrm{opp}}=\operatorname{Cent}_{\operatorname{Perm}(G)}(N)=\{\tau \in \operatorname{Perm}(G): \eta \tau=\tau \eta \text { for all } \eta \in N\}
$$

Then $N^{\mathrm{opp}} \leq$ Perm $G$ is regular and normalized by $G$, hence $N^{\mathrm{opp}}$ gives rise to a Hopf-Galois structure on $L / K$.

If $\mathfrak{B}$ is the brace corresponding to $N$, then turns out that the brace corresponding to $N^{\mathrm{opp}}$ is $\mathfrak{B}^{\prime}$.

## Outline

## (1) Skew Left Braces and Hopf-Galois Structures

(2) Opposite Braces
(3) Examples

4 Two Applications
(5) One More Example

6 Two Final Questions
$(x \circ y)=x\left(x^{-1} \circ y\right) x$

## Example (Trivial Brace)

Let $\mathfrak{B}=(B, \cdot, \circ), x \circ y=x y$.

Then

$$
x \circ^{\prime} y=x\left(x^{-1} \circ y\right) x=x\left(x^{-1} y\right) x=y x
$$

and so $\left(B, \circ^{\prime}\right)=(B, \circ)^{\text {opp }}$.

Note $\mathfrak{B}$ was the first example in this talk, $\mathfrak{B}^{\prime}$ was the second.
$(x \circ y)=x\left(x^{-1} \circ y\right) x$

## Example (Type $D_{4}, Q_{8}$ )

Let $(B, \cdot)=\left\{\langle\sigma, \tau\rangle: \sigma^{4}=\tau^{2}=\sigma \tau \sigma \tau=e\right\} \cong D_{4}$ with

$$
x \circ y=\left\{\begin{array}{cc}
x y & x \in\langle\sigma\rangle \text { or } y \in\langle\sigma\rangle \\
\sigma^{2} x y & x, y \notin\langle\sigma\rangle
\end{array} .\right.
$$

Then

$$
x \circ^{\prime} y=\left\{\begin{array}{cc}
y x & x \in\langle\sigma\rangle \text { or } y \in\langle\sigma\rangle \\
\sigma^{2} y x & x, y \notin\langle\sigma\rangle
\end{array} .\right.
$$

$\left(x \circ^{\prime} y\right)=x\left(x^{-1} \circ y\right) x$

## Example (Type $S_{n}, S_{n}, n \geq 4$ )

Fix $\tau \in A_{n},|\tau|=2$. Let $(B, \cdot)=S_{n}$ and

$$
\sigma \circ \pi=\left\{\begin{array}{cc}
\sigma \pi & \sigma \in A_{n} \\
\sigma \tau \pi \tau & \sigma \notin A_{n}
\end{array}\right.
$$

Then

$$
\sigma \circ^{\prime} \pi=\left\{\begin{array}{cc}
\pi \sigma & \sigma \in A_{n} \\
\tau \pi \tau \sigma & \sigma \notin A_{n}
\end{array} .\right.
$$

## Outline

(1) Skew Left Braces and Hopf-Galois Structures
(2) Opposite Braces
(3) Examples

4 Two Applications
(5) One More Example
(6) Two Final Questions

## 1. Solving the Yang-Baxter Equation

Braces were developed to provide set-theoretic solutions to the Yang-Baxter Equation.

A set-theoretic solution to the YBE is a set $B$ together with a function $r: B \times B \rightarrow B \times B$ such that

$$
r_{12} r_{23} r_{12}=r_{23} r_{12} r_{23}
$$

where $r_{i j}: B \times B \times B \rightarrow B \times B \times B$ is obtained by applying $r$ to the $i^{\text {th }}$ and $j^{\text {th }}$ factors, $i<j$.

A simple example: let $B$ be any set, $r(x, y)=(y, x)$.
Then

$$
r_{12} r_{23} r_{12}(x, y, z)=(z, y, x)=r_{23} r_{12} r_{23}(x, y, z)
$$

and the YBE holds.

## $r_{12} r_{23} r_{12}=r_{23} r_{12} r_{23}$

A slightly more interesting example.
Let $B$ be a group, and let $r(x, y)=\left(y, y^{-1} x y\right)$.
Then:

$$
\begin{aligned}
r_{12} r_{23} r_{12}(x, y, z) & =r_{12} r_{23}\left(y, y^{-1} x y, z\right) \\
& =r_{12}\left(y, z, z^{-1} y^{-1} x y z\right) \\
& =\left(z, z^{-1} y z,(y z)^{-1} x(y z)\right) \\
r_{23} r_{12} r_{23}(x, y, z) & =r_{23} r_{12}\left(x, z, z^{-1} y z\right) \\
& =r_{23}\left(z, z^{-1} x z, z^{-1} y z\right) \\
& =\left(z, z^{-1} y z, z^{-1} y^{-1} z z^{-1} x z z^{-1} y z\right) \\
& =\left(z, z^{-1} y z,(y z)^{-1} x(y z)\right)
\end{aligned}
$$

## Why (skew left) braces matter

Let $\mathfrak{B}$ be a brace.

Then

$$
r(x, y)=\left(x^{-1}(x \circ y), \overline{x^{-1}(x \circ y)} \circ x \circ y\right)
$$

is a (non-degenerate) set-theoretic solution to YBE.

## Example (Trivial Brace)

Let $\mathfrak{B}=(B, \cdot, \cdot)$. Then $r(x, y)=\left(y, y^{-1} x y\right)$, as above.

$$
r(x, y)=\left(x^{-1}(x \circ y), \overline{x^{-1}(x \circ y)} \circ x \circ y\right)
$$

## Example (Type $D_{4}, Q_{8}$ )

Let $(B, \cdot) \cong D_{4}$,

$$
x \circ y=\left\{\begin{array}{cc}
x y & x \in\langle\sigma\rangle \text { or } y \in\langle\sigma\rangle \\
\sigma^{2} x y & x, y \notin\langle\sigma\rangle
\end{array} .\right.
$$

Then

$$
r(x, y)=\left\{\begin{array}{cc}
\left(y, y^{-1} x y\right) & x \in\langle\sigma\rangle \text { or } y \in\langle\sigma\rangle \\
\left(\sigma^{2} y, \sigma^{2} y^{-1} x y\right) & x, y \notin\langle\sigma\rangle
\end{array} .\right.
$$

## Using opposites

## Proposition

If $\mathfrak{B}=(B, \cdot, \circ)$ is a brace, then

$$
\begin{aligned}
r(x, y) & =\left(x^{-1}(x \circ y), \overline{x^{-1}(x \circ y)} \circ x \circ y\right) \\
r^{\prime}(x, y) & =\left(x^{-1}(x \circ\right. \\
\prime & \left.y),\left(\overline{\left(x^{-1}\left(x \circ^{\prime} y\right)\right)^{-1}}\right)^{-1} \circ^{\prime} x \circ^{\prime} y\right)
\end{aligned}
$$

are set-theoretic solutions to the Yang-Baxter equation.
Note that since $x \circ^{\prime} y=x\left(x^{-1} \circ y\right) x$,

$$
r^{\prime}(x, y)=\left(w,\left(\overline{w^{-1}}\right)^{-1}\left(\overline{w^{-1}} \circ x w\right)\left(\overline{w^{-1}}\right)^{-1}\right)
$$

where $w=\left(x^{-1} \circ y\right) x$.

## Example: type $D_{4}, Q_{8}$

Let $(B, \cdot)=\left\{\langle\sigma, \tau\rangle: \sigma^{4}=\tau^{2}=\sigma \tau \sigma \tau=e\right\} \cong D_{4}$ and

$$
\begin{aligned}
& x \circ y=\left\{\begin{array}{cc}
x y & x \in\langle\sigma\rangle \text { or } y \in\langle\sigma\rangle \\
\sigma^{2} x y & x, y \notin\langle\sigma\rangle
\end{array},\right. \\
& x \circ^{\prime} y=\left\{\begin{array}{cc}
y x & x \in\langle\sigma\rangle \text { or } y \in\langle\sigma\rangle \\
\sigma^{2} y x & x, y \notin\langle\sigma\rangle
\end{array}\right.
\end{aligned}
$$

Then

$$
\begin{aligned}
& r(x, y)=\left\{\begin{array}{cc}
\left(y, y^{-1} x y\right) & x \in\langle\sigma\rangle \text { or } y \in\langle\sigma\rangle \\
\left(\sigma^{2} y, \sigma^{2} y^{-1} x y\right) & x, y \notin\langle\sigma\rangle
\end{array}\right. \\
& r^{\prime}(x, y)=\left\{\begin{array}{cc}
\left(x^{-1} y x, x\right) & x \in\langle\sigma\rangle \text { or } y \in\langle\sigma\rangle \\
\left(\sigma^{2} x^{-1} y x, \sigma^{2} x\right) & x, y \notin\langle\sigma\rangle
\end{array}\right.
\end{aligned}
$$

## 2. The Hopf-Galois correspondence

Suppose we have a Hopf Galois structure on a Galois extension $L / K$, consisting of a $K$-Hopf algebra $H$ and an action of $H$ on $L$ satisfying certain properties.

Then some, not necessarily all, intermediate fields can be found by considering the "fixed fields" of the action of $H$ restricted to a sub-Hopf algebra.

Let $\mathfrak{B}=(B, \cdot, \circ)$ be the corresponding brace.
Recently, Childs has established a connection between the intermediate fields found above with "○-stable subgroups" of $(B, \cdot)$.
A subgroup $C \leq(B, \cdot)$ is o-stable if $(x \circ c) x^{-1} \in C$ for all $x \in B, c \in C$.
Additionally, Bachiller defines a left ideal of $\mathfrak{B}$ to be a subgroup $C \leq(B, \cdot)$ such that $x^{-1}(x \circ C) \in C$ for all $x \in B, c \in C$.

These are opposite substructures.

## $\circ^{\prime}$-stable: $\left(x \circ^{\prime} c\right) x^{-1} \in C$; left ideal: $x^{-1}(x \circ C) \in C$

## Proposition

$C \leq(B, \cdot)$ is a left ideal of $\mathfrak{B}$ if and only if $C$ is $\circ^{\prime}$-stable.

Proof. (sketch)

$$
\begin{aligned}
\left(x \circ^{\prime} c\right) x^{-1} & =\left(x\left(x^{-1} \circ c\right) x\right) x^{-1} \\
& =x\left(x^{-1} \circ c\right),
\end{aligned}
$$

So $\left(x \circ^{\prime} c\right) x^{-1} \in C$ iff $\left(x^{-1}\right)^{-1}\left(x^{-1} \circ c\right) \in C$ for all $x \in B, c \in C$.

Thus, the intermediate fields corresponding to $N \leq \operatorname{Perm}(G)$ can be identified using the left ideals of the opposite brace.

## Outline

(1) Skew Left Braces and Hopf-Galois Structures
(2) Opposite Braces
(3) Examples
(4) Two Applications
(5) One More Example

6 Two Final Questions

Let $B=\mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)$, and let

$$
H=\left\{A \in \mathrm{GL}_{3}\left(\mathbb{F}_{2}\right): A\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\}, C=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right], K=\langle C\rangle
$$

Then every $X \in G L_{3}\left(\mathbb{F}_{2}\right)$ factors uniquely into $A C^{i}$ for $A \in H, 0 \leq i \leq 6$.

Define

$$
\left(A_{1} C^{i}\right) \circ\left(A_{2} C^{j}\right)=A_{1} A_{2} C^{i+j}, A_{1}, A_{2} \in H
$$

Then $(B, \circ) \cong H \times K \cong S_{4} \times C_{7}$ and $\mathfrak{B}=(B, \cdot, \circ)$ is a brace.

## $\left(A_{1} C^{i}\right) \circ\left(A_{2} C^{j}\right)=A_{1} A_{2} C^{i+j}$

In all previous brace examples, $\left(\overline{x^{-1}}\right)^{-1}=\bar{x}$, that is, the inverses under $\circ$ and $\mathrm{o}^{\prime}$ coincide.

Here, let

$$
X=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Then

$$
\bar{X}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1
\end{array}\right],\left(\overline{X^{-1}}\right)^{-1}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] .
$$

## $\left(A_{1} C^{i}\right) \circ\left(A_{2} C^{j}\right)=A_{1} A_{2} C^{i+j}$

Let

$$
X=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right], Y=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

Then

$$
\begin{aligned}
& r(X, Y)=\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\right) \\
& r^{\prime}(X, Y)=\left(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1
\end{array}\right]\right)
\end{aligned}
$$

In all previous brace examples, $r^{\prime}(x, y)=\operatorname{Tr} T(x, y)$, where $T: B \times B \rightarrow B \times B$ is the twist map, but...

## $\left(A_{1} C^{i}\right) \circ\left(A_{2} C^{j}\right)=A_{1} A_{2} C^{i+j}$

$$
\begin{aligned}
r(X, Y) & =\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\right) \\
r^{\prime}(X, Y) & =\left(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1
\end{array}\right]\right) \\
\operatorname{Tr} T(x, y) & =\left(\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\right)
\end{aligned}
$$

...shows this is not true in general.

## Outline

(1) Skew Left Braces and Hopf-Galois Structures
(2) Opposite Braces
(3) Examples

4 Two Applications
(5) One More Example

6 Two Final Questions

Question. If one is given the value of $r(x, y)$ for some $x, y$, is $r^{\prime}(x, y)$ easy to deduce without looking at the corresponding brace?

## Isomorphism?

Let $\mathfrak{B}=(B, \cdot, \circ)$. If $(B, \cdot)$ is abelian, then $x \mapsto x^{-1}: \mathfrak{B} \rightarrow \mathfrak{B}^{\prime}$ is an isomorphism of braces.

Question. Can $\mathfrak{B} \cong \mathfrak{B}^{\prime}$ if $(B, \cdot)$ nonabelian? (We conjecture "no".)
Proposition (Goodnight-Stordy). If there exist $x, y \in B$ with $x y \neq y x$ and either $x \circ y=x y$ or $x \circ y=y x$ then $\mathfrak{B} \neq \mathfrak{B}^{\prime}$.
The $x \circ y=x y$ or $y x$ property appears in each of our examples:
Trivial Brace:

$$
x \circ y=x y
$$

Type $D_{4}, Q_{8}$ :

$$
x \circ y=\left\{\begin{array}{cc}
x y & x \in\langle\sigma\rangle \text { or } y \in\langle\sigma\rangle \\
\sigma^{2} x y & x, y \notin\langle\sigma\rangle
\end{array}\right.
$$

Type $S_{n}, S_{n}$ :

$$
\sigma \circ \pi=\left\{\begin{array}{cc}
\sigma \pi & \sigma \in A_{n} \\
\sigma \tau \pi \tau & \sigma \notin A_{n}
\end{array}\right.
$$

Type $\mathrm{GL}_{3}\left(\mathbb{F}_{2}\right),\left(S_{4} \times C_{7}\right)$ :

$$
\left(A_{1} C^{i}\right) \circ\left(A_{2} C^{j}\right)=A_{1} A_{2} C^{i+j}
$$

Thank you.

