Opposite skew left braces, Hopf-Galois theory, and solutions to the Yang-Baxter equation

Alan Koch

Agnes Scott College

March 16, 2019

Alan Koch (Agnes Scott College)

1/35

Outline

Skew Left Braces and Hopf-Galois Structures

2 Opposite Braces

- 3 Examples
- 4 Two Applications
- One More Example
- 6 Two Final Questions

Definition

A skew left brace is a set B with two binary operations \cdot, \circ such that

- (B, \cdot) is a group;
- (B, \circ) is a group;
- 3 for all $x, y, z \in B$ we have

$$x \circ (y \cdot z) = (x \circ y) \cdot x^{-1} \cdot (x \circ z)$$
 (brace relation)

where x^{-1} is the inverse in (B, \cdot) .

Notation:

- Write $\mathfrak{B} = (B, \cdot, \circ)$.
- Write xy for $x \cdot y$ when appropriate.
- For brevity, "brace" = "skew left brace" here.
- Denote the inverse of x in (B, \circ) by \overline{x} .
- $e \in B$ denotes the identity (note $xe = x \circ e = x$).

Example (Trivial Brace)

Let (B, \cdot) be a group.

Define $x \circ y = xy$.

Then

$$(x \circ y)x^{-1}(x \circ z) = (xy)z = x(yz) = x \circ (yz)$$

and so $\mathfrak{B} := (B, \cdot, \circ)$ is a brace.

イロト イ理ト イヨト イヨト

Example (Almost the Trivial Brace)

Let (B, \cdot) be a group.

Define $x \circ y = yx$.

Then

$$(x \circ y)x^{-1}(x \circ z) = (yx)x^{-1}(zx)$$
$$= (yz)x$$
$$= x \circ (yz).$$

Thus, $\mathfrak{B} := (B, \cdot, \circ)$ is a brace.

3

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Let *N*, *G* be groups.

We say $\mathfrak{B} = (B, \cdot, \circ)$ is of type N, G if $(B, \cdot) \cong N$ and $(B, \circ) \cong G$.

Example (Type D_4 , Q_8)

Let
$$(B, \cdot) = \{ \langle \sigma, \tau \rangle : \sigma^4 = \tau^2 = \sigma \tau \sigma \tau = e \} \cong D_4$$
 and define

$$\boldsymbol{x} \circ \boldsymbol{y} = \begin{cases} \boldsymbol{x} \boldsymbol{y} & \boldsymbol{x} \in \langle \sigma \rangle \text{ or } \boldsymbol{y} \in \langle \sigma \rangle \\ \sigma^2 \boldsymbol{x} \boldsymbol{y} & \boldsymbol{x}, \boldsymbol{y} \notin \langle \sigma \rangle \end{cases}$$

Then $(B, \circ) \cong Q_8$. (Note: $\tau \circ \tau = \sigma^2 \tau^2 = \sigma^2$.)

ъ

・ロト ・四ト ・ヨト ・ヨト

Example (Type S_n , S_n with $n \ge 4$)

Fix $\tau \in A_n$, $|\tau| = 2$. Let $(B, \cdot) = S_n$, and define

$$\sigma \circ \pi = \begin{cases} \sigma \pi & \sigma \in \mathbf{A}_{\mathbf{n}} \\ \sigma \tau \pi \tau & \sigma \notin \mathbf{A}_{\mathbf{n}} \end{cases}$$

Then $(B, \circ) \cong S_n$.

イロト イ理ト イヨト イヨト

Let L/K be a finite Galois extension of fields, (G, *) = Gal(L/K).

Greither-Pareigis (1987). There is a one-to-one correspondence between regular subgroups $N \leq \text{Perm}(G)$ which are normalized by *G* (acting by left regular representation) and Hopf-Galois structures on L/K.

Let $(N, \cdot) \leq \text{Perm}(G)$ be a regular subgroup normalized by *G*. Let $a: N \to G$ be the bijection given by $a(\eta) = \eta[1_G]$. Define

$$\eta \circ \pi = a^{-1}(a(\eta) * a(\pi)), \ \eta, \pi \in N.$$

Then (N, \cdot, \circ) is a brace, and $(N, \circ) \cong (G, *)$.

The correspondence $[(N, \cdot) \leq \text{Perm}(G)] \mapsto (N, \cdot, \circ), (N, \circ) \cong G$ is onto the set of finite braces but not one-to-one.

・ロト ・ 四ト ・ ヨト ・ ヨト …

Skew Left Braces and Hopf-Galois Structures

2 Opposite Braces

- 3 Examples
- 4 Two Applications
- One More Example
- 6 Two Final Questions

Construction of the opposite

Let $\mathfrak{B} = (B, \cdot, \circ)$ be a brace. Define a new operation, \circ' , on *B* by

$$x \circ' y = \left(x^{-1} \circ y^{-1}\right)^{-1}, x, y \in B.$$

Since

$$\begin{aligned} x \circ' (y \circ' z) &= x \circ' (y^{-1} \circ z^{-1})^{-1} \\ &= (x^{-1} \circ y^{-1} \circ z^{-1})^{-1} \\ &= (x \circ' y) \circ' z, \end{aligned}$$

 (B, \circ') is associative. Also, $x \circ' e = (x^{-1} \circ e)^{-1} = (x^{-1})^{-1} = x$ shows $e \in B$ is the identity. Finally, $x \circ' \overline{x^{-1}}^{-1} = (x^{-1} \circ \overline{x^{-1}})^{-1} = e^{-1} = e$, so (B, \circ') is a group.

$\overline{x \circ' y} = \left(x^{-1} \circ y^{-1}\right)^{-1}$

Claim: $\mathfrak{B}' := (B, \cdot, \circ')$ is a brace.

For all $x, y, z \in B$ we have:

$$x \circ' (yz) = (x^{-1} \circ (yz)^{-1})^{-1}$$

= $(x^{-1} \circ (z^{-1}y^{-1}))^{-1}$
= $((x^{-1} \circ z^{-1})x(x^{-1} \circ y^{-1}))^{-1}$
= $(x^{-1} \circ y^{-1})^{-1}x^{-1}(x^{-1} \circ z^{-1})^{-1}$
= $(x \circ' y)x^{-1}(x \circ' z).$

We call \mathfrak{B}' the *opposite brace* to \mathfrak{B} .

< ロ > < 同 > < 回 > < 回 >

Properties:

- $\mathfrak{B}'' := (\mathfrak{B}')' = \mathfrak{B}.$
- $(B, \circ) \cong (B, \circ')$ by the "inverse" map $x \mapsto x^{-1}$.
- If (B, \cdot) is abelian, then $\mathfrak{B}' \cong \mathfrak{B}$.
- \mathfrak{B} and \mathfrak{B}' are of the same type.
- The identity $x \circ' y = x(x^{-1} \circ y)x$ holds.
- In general, $(\overline{x^{-1}})^{-1} \neq \overline{x}$, i.e., the inverses under \circ and \circ' do not coincide.

.

Motivation: connection with Hopf-Galois theory II

Let L/K be a finite Galois extension of fields, G = Gal(L/K), and let $N \leq \text{Perm}(G)$ be regular and normalized by G.

Let

$$N^{\mathsf{opp}} = \operatorname{Cent}_{\mathsf{Perm}(G)}(N) = \{ \tau \in \mathsf{Perm}(G) : \eta \tau = \tau \eta \text{ for all } \eta \in N \}.$$

Then $N^{\text{opp}} \leq \text{Perm } G$ is regular and normalized by G, hence N^{opp} gives rise to a Hopf-Galois structure on L/K.

If \mathfrak{B} is the brace corresponding to *N*, then turns out that the brace corresponding to N^{opp} is \mathfrak{B}' .

Skew Left Braces and Hopf-Galois Structures

2 Opposite Braces

- 4 Two Applications
- One More Example
- 6 Two Final Questions

イロト イポト イヨト イヨ

$$(x \circ' y) = x(x^{-1} \circ y)x$$

Example (Trivial Brace)

Let $\mathfrak{B} = (B, \cdot, \circ), x \circ y = xy.$

Then

$$x \circ' y = x(x^{-1} \circ y)x = x(x^{-1}y)x = yx$$

and so $(B, \circ') = (B, \circ)^{opp}$.

Note \mathfrak{B} was the first example in this talk, \mathfrak{B}' was the second.

Alan Koch (Agnes Scott College)

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

$$(x \circ' y) = x(x^{-1} \circ y)x$$

Example (Type D_4 , Q_8)

Let $(B, \cdot) = \{ \langle \sigma, \tau \rangle : \sigma^4 = \tau^2 = \sigma \tau \sigma \tau = e \} \cong D_4$ with

$$\boldsymbol{x} \circ \boldsymbol{y} = \begin{cases} \boldsymbol{x} \boldsymbol{y} & \boldsymbol{x} \in \langle \sigma \rangle \text{ or } \boldsymbol{y} \in \langle \sigma \rangle \\ \sigma^2 \boldsymbol{x} \boldsymbol{y} & \boldsymbol{x}, \boldsymbol{y} \notin \langle \sigma \rangle \end{cases}$$

٠

.

<ロ> <四> <四> <日> <日> <日> <日</p>

Then

$$\mathbf{x} \circ' \mathbf{y} = \begin{cases} \mathbf{y} \mathbf{x} & \mathbf{x} \in \langle \sigma \rangle \text{ or } \mathbf{y} \in \langle \sigma \rangle \\ \sigma^2 \mathbf{y} \mathbf{x} & \mathbf{x}, \mathbf{y} \notin \langle \sigma \rangle \end{cases}$$

$$(x \circ' y) = x(x^{-1} \circ y)x$$

Example (Type $S_n, S_n, n \ge 4$)

Fix $\tau \in A_n$, $|\tau| = 2$. Let $(B, \cdot) = S_n$ and

$$\sigma \circ \pi = \begin{cases} \sigma \pi & \sigma \in \mathbf{A}_{\mathbf{n}} \\ \sigma \tau \pi \tau & \sigma \notin \mathbf{A}_{\mathbf{n}} \end{cases}$$

Then

$$\sigma \circ' \pi = \begin{cases} \pi \sigma & \sigma \in \mathbf{A}_{\mathbf{n}} \\ \tau \pi \tau \sigma & \sigma \notin \mathbf{A}_{\mathbf{n}} \end{cases}$$

Skew Left Braces and Hopf-Galois Structures

2 Opposite Braces

- 3 Examples
- Two Applications
- 5 One More Example
- 6 Two Final Questions

1. Solving the Yang-Baxter Equation

Braces were developed to provide set-theoretic solutions to the Yang-Baxter Equation.

A *set-theoretic solution* to the YBE is a set *B* together with a function $r : B \times B \rightarrow B \times B$ such that

$$r_{12}r_{23}r_{12} = r_{23}r_{12}r_{23}$$

where $r_{ij} : B \times B \times B \to B \times B \times B$ is obtained by applying *r* to the *i*th and *j*th factors, *i* < *j*.

A simple example: let *B* be any set, r(x, y) = (y, x).

Then

$$r_{12}r_{23}r_{12}(x,y,z) = (z,y,x) = r_{23}r_{12}r_{23}(x,y,z).$$

and the YBE holds.

🗇 🕨 🖌 ヨ ト イ ヨ

$r_{12}r_{23}r_{12} = r_{23}r_{12}r_{23}$

A slightly more interesting example.

Let *B* be a group, and let $r(x, y) = (y, y^{-1}xy)$.

Then:

$$\begin{aligned} r_{12}r_{23}r_{12}(x,y,z) &= r_{12}r_{23}(y,y^{-1}xy,z) \\ &= r_{12}(y,z,z^{-1}y^{-1}xyz) \\ &= (z,z^{-1}yz,(yz)^{-1}x(yz)) \\ r_{23}r_{12}r_{23}(x,y,z) &= r_{23}r_{12}(x,z,z^{-1}yz) \\ &= r_{23}(z,z^{-1}xz,z^{-1}yz) \\ &= (z,z^{-1}yz,z^{-1}y^{-1}zz^{-1}xzz^{-1}yz) \\ &= (z,z^{-1}yz,(yz)^{-1}x(yz)). \end{aligned}$$

æ

イロト イ理ト イヨト イヨト

Let \mathfrak{B} be a brace.

Then

$$r(x,y) = (x^{-1}(x \circ y), \overline{x^{-1}(x \circ y)} \circ x \circ y)$$

is a (non-degenerate) set-theoretic solution to YBE.

Example (Trivial Brace)

Let
$$\mathfrak{B} = (B, \cdot, \cdot)$$
. Then $r(x, y) = (y, y^{-1}xy)$, as above.

$r(x,y) = (x^{-1}(x \circ y), \overline{x^{-1}(x \circ y)} \circ x \circ y)$

Example (Type D_4 , Q_8)

Let $(B, \cdot) \cong D_4$,

$$\boldsymbol{x} \circ \boldsymbol{y} = \begin{cases} \boldsymbol{x} \boldsymbol{y} & \boldsymbol{x} \in \langle \sigma \rangle \text{ or } \boldsymbol{y} \in \langle \sigma \rangle \\ \sigma^2 \boldsymbol{x} \boldsymbol{y} & \boldsymbol{x}, \boldsymbol{y} \notin \langle \sigma \rangle \end{cases}$$

.

.

イロン イ理 とく ヨン イヨン

Then

$$r(x,y) = \begin{cases} (y, y^{-1}xy) & x \in \langle \sigma \rangle \text{ or } y \in \langle \sigma \rangle \\ (\sigma^2 y, \sigma^2 y^{-1}xy) & x, y \notin \langle \sigma \rangle \end{cases}$$

æ

Using opposites

Proposition

If $\mathfrak{B} = (B, \cdot, \circ)$ is a brace, then

$$r(x,y) = (x^{-1}(x \circ y), \overline{x^{-1}(x \circ y)} \circ x \circ y)$$

$$r'(x,y) = (x^{-1}(x \circ' y), \left(\overline{(x^{-1}(x \circ' y))^{-1}}\right)^{-1} \circ' x \circ' y)$$

are set-theoretic solutions to the Yang-Baxter equation.

Note that since $x \circ' y = x(x^{-1} \circ y)x$,

$$r'(x,y) = \left(w, \left(\overline{w^{-1}}\right)^{-1} \left(\overline{w^{-1}} \circ xw\right) \left(\overline{w^{-1}}\right)^{-1}\right)$$

where
$$w = (x^{-1} \circ y)x$$
.

Alan Koch (Agnes Scott College)

イロト イ団ト イヨト イヨト

Example: type D_4 , $\overline{Q_8}$

Let
$$(B, \cdot) = \{ \langle \sigma, \tau \rangle : \sigma^4 = \tau^2 = \sigma \tau \sigma \tau = e \} \cong D_4$$
 and
 $x \circ y = \begin{cases} xy & x \in \langle \sigma \rangle \text{ or } y \in \langle \sigma \rangle \\ \sigma^2 xy & x, y \notin \langle \sigma \rangle \end{cases}$,

$$x \circ' y = \begin{cases} yx & x \in \langle \sigma \rangle \text{ or } y \in \langle \sigma \rangle \\ \sigma^2 yx & x, y \notin \langle \sigma \rangle \end{cases}$$

•

イロト イヨト イヨト イヨト

•

Then

$$r(x,y) = \begin{cases} (y,y^{-1}xy) & x \in \langle \sigma \rangle \text{ or } y \in \langle \sigma \rangle \\ (\sigma^2 y, \sigma^2 y^{-1}xy) & x,y \notin \langle \sigma \rangle \end{cases},$$

$$r'(x,y) = \begin{cases} (x^{-1}yx,x) & x \in \langle \sigma \rangle \text{ or } y \in \langle \sigma \rangle \\ (\sigma^2 x^{-1}yx, \sigma^2 x) & x,y \notin \langle \sigma \rangle \end{cases}.$$

æ

2. The Hopf-Galois correspondence

Suppose we have a Hopf Galois structure on a Galois extension L/K, consisting of a *K*-Hopf algebra *H* and an action of *H* on *L* satisfying certain properties.

Then some, not necessarily all, intermediate fields can be found by considering the "fixed fields" of the action of H restricted to a sub-Hopf algebra.

Let $\mathfrak{B} = (B, \cdot, \circ)$ be the corresponding brace.

Recently, Childs has established a connection between the intermediate fields found above with " \circ -stable subgroups" of (*B*, ·).

A subgroup $C \leq (B, \cdot)$ is \circ -stable if $(x \circ c)x^{-1} \in C$ for all $x \in B, c \in C$.

Additionally, Bachiller defines a *left ideal* of \mathfrak{B} to be a subgroup $C \leq (B, \cdot)$ such that $x^{-1}(x \circ c) \in C$ for all $x \in B, c \in C$.

These are opposite substructures.

o'-stable:
$$(x \circ' c)x^{-1} \in C$$
; left ideal: $x^{-1}(x \circ c) \in C$

Proposition

 $C \leq (B, \cdot)$ is a left ideal of \mathfrak{B} if and only if C is \circ' -stable.

Proof. (sketch)

$$(x \circ' c)x^{-1} = (x(x^{-1} \circ c)x)x^{-1}$$

= $x(x^{-1} \circ c),$

So $(x \circ' c)x^{-1} \in C$ iff $(x^{-1})^{-1}(x^{-1} \circ c) \in C$ for all $x \in B, c \in C$.

Thus, the intermediate fields corresponding to $N \leq \text{Perm}(G)$ can be identified using the left ideals of the opposite brace.

イロト イ団ト イヨト イヨト

Skew Left Braces and Hopf-Galois Structures

2 Opposite Braces

- 3 Examples
- 4 Two Applications
- One More Example
- 6 Two Final Questions

イロト イポト イヨト イヨ

Let $B = GL_3(\mathbb{F}_2)$, and let

$$H = \left\{ A \in \mathsf{GL}_3(\mathbb{F}_2) : A \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}, \ C = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \ K = \langle C \rangle.$$

Then every $X \in GL_3(\mathbb{F}_2)$ factors uniquely into AC^i for $A \in H$, $0 \le i \le 6$.

Define

$$(A_1C^i) \circ (A_2C^j) = A_1A_2C^{i+j}, A_1, A_2 \in H.$$

Then $(B, \circ) \cong H \times K \cong S_4 \times C_7$ and $\mathfrak{B} = (B, \cdot, \circ)$ is a brace.

$(A_1C^i)\circ(A_2C^j)=A_1A_2C^{i+j}$

In all previous brace examples, $(\overline{x^{-1}})^{-1} = \overline{x}$, that is, the inverses under \circ and \circ' coincide.

Here, let

$$X = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

Then

$$\overline{X} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \ \left(\overline{X^{-1}}\right)^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

< 日 > < 同 > < 回 > < 回 > < 回 > <

 $(A_1C^i)\circ(A_2C^j)=A_1A_2C^{i+j}$

Let

$$X = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

Then

$$r(X, Y) = \left(\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \right)$$
$$r'(X, Y) = \left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \right)$$

In all previous brace examples, r'(x, y) = TrT(x, y), where $T: B \times B \rightarrow B \times B$ is the twist map, but...

イロト イ理ト イヨト イヨト

$$r(X, Y) = \left(\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \right)$$
$$r'(X, Y) = \left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \right)$$
$$TrT(x, y) = \left(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \right)$$

...shows this is not true in general.

크

イロト イヨト イヨト イヨト

Skew Left Braces and Hopf-Galois Structures

2 Opposite Braces

- 3 Examples
- 4 Two Applications
- 5 One More Example
- Two Final Questions

イロト イポト イヨト イヨ

Question. If one is given the value of r(x, y) for some x, y, is r'(x, y) easy to deduce without looking at the corresponding brace?

イロト イ団ト イヨト イヨト

Let $\mathfrak{B} = (B, \cdot, \circ)$. If (B, \cdot) is abelian, then $x \mapsto x^{-1} : \mathfrak{B} \to \mathfrak{B}'$ is an isomorphism of braces.

Question. Can $\mathfrak{B} \cong \mathfrak{B}'$ if (B, \cdot) nonabelian? (We conjecture "no".)

Proposition (Goodnight-Stordy). If there exist $x, y \in B$ with $xy \neq yx$ and either $x \circ y = xy$ or $x \circ y = yx$ then $\mathfrak{B} \ncong \mathfrak{B}'$.

The $x \circ y = xy$ or yx property appears in each of our examples:

Trivial Brace:
$$x \circ y = xy$$
Type D_4, Q_8 : $x \circ y = \begin{cases} xy & x \in \langle \sigma \rangle \text{ or } y \in \langle \sigma \rangle \\ \sigma^2 xy & x, y \notin \langle \sigma \rangle \end{cases}$ Type S_n, S_n : $\sigma \circ \pi = \begin{cases} \sigma \pi & \sigma \in A_n \\ \sigma \tau \pi \tau & \sigma \notin A_n \end{cases}$ Type $GL_3(\mathbb{F}_2), (S_4 \times C_7)$: $(A_1C^i) \circ (A_2C^j) = A_1A_2C^{i+j}.$

Thank you.

æ

イロト イロト イヨト イヨト